1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
| import os import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchvision import datasets, transforms from time import time import argparse from tqdm import tqdm import wandb
def compute_accuracy(preds: torch.Tensor, target: torch.Tensor, from_logits: bool = True) -> float: """ 计算准确率。 参数: - preds: 模型输出,形状为 [batch_size, num_classes] 或 [batch_size](如果已经是类标) - target: 真实标签,形状为 [batch_size] - from_logits: 若为 True,表示 preds 是 logits,需要取 argmax;若为 False,表示 preds 已是预测标签
返回: - 准确率(float) """ if from_logits: pred_labels = torch.argmax(preds, dim=1) else: pred_labels = preds
correct = (pred_labels == target).sum().item() total = target.numel()
return correct / total
class ConvNet(nn.Module):
def __init__(self): super(ConvNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 32, 3, 1), nn.ReLU(), nn.Conv2d(32, 64, 3, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Dropout(0.25) ) self.classifier = nn.Sequential( nn.Linear(9216, 128), nn.ReLU(), nn.Dropout(0.5), nn.Linear(128, 10) )
def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) x = self.classifier(x) output = F.log_softmax(x, dim=1) return output
class MyDataset(Dataset): def __init__(self, data): self.data = data
def __len__(self): return len(self.data)
def __getitem__(self, idx): image, label = self.data[idx] return image, label
class Trainer:
def __init__( self, model: torch.nn.Module, optimizer: torch.optim.Optimizer, gpu_id: int=0, ) -> None: self.gpu_id = gpu_id self.model = model.to(gpu_id) self.optimizer = optimizer
def save_checkpoint(self): ckp = self.model.state_dict() PATH = "checkpoint.pt" torch.save(ckp, PATH) print(f"Training checkpoint saved at {PATH}")
def _train_batch(self, source, targets):
self.model.train() self.optimizer.zero_grad()
source = source.to(self.gpu_id) targets = targets.to(self.gpu_id)
output = self.model(source) loss = F.cross_entropy(output, targets)
loss.backward() self.optimizer.step()
batch_loss = loss.detach().item() return batch_loss
def _test_batch(self, source, targets):
self.model.eval()
with torch.no_grad():
source = source.to(self.gpu_id) targets = targets.to(self.gpu_id)
output = self.model(source) loss = F.cross_entropy(output, targets)
batch_loss = loss.detach().item() accuracy = compute_accuracy(output, targets)
return batch_loss, accuracy
def train_epoch(self, train_dataloader): total_loss = 0.0 num_batches = 0
for source, targets in tqdm(train_dataloader, desc="Training", mininterval=1): loss = self._train_batch(source, targets) total_loss += loss num_batches += 1 avg_loss = total_loss / num_batches return avg_loss def test_epoch(self, test_dataloader): total_loss = 0.0 num_batches = 0 total_accuracy = 0.0
for source, targets in tqdm(test_dataloader, desc="Testing", mininterval=1): loss, accuracy = self._test_batch(source, targets) total_loss += loss total_accuracy += accuracy num_batches += 1 avg_loss = total_loss / num_batches avg_accuracy = total_accuracy / num_batches return avg_loss, avg_accuracy
def prepare_dataset(): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])
train_data = datasets.MNIST( root = './mnist', train=True, transform = transform, ) train_set = MyDataset(train_data) test_data = datasets.MNIST( root = './mnist', train=False, transform = transform, ) test_set = MyDataset(test_data) return train_set, test_set
def prepare_dataloader(dataset: Dataset, batch_size: int): return DataLoader( dataset, batch_size=batch_size, pin_memory=True, shuffle=False, )
def arg_parser(): parser = argparse.ArgumentParser(description="MNIST Training Script") parser.add_argument("--epochs", type=int, default=5, help="Number of training epochs") parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training") parser.add_argument("--lr", type=float, default=0.0005, help="Learning rate") parser.add_argument("--lr_decay_step_num", type=int, default=1, help="Step size for learning rate decay") parser.add_argument("--lr_decay_factor", type=float, default=0.5, help="Factor by which learning rate is decayed") parser.add_argument("--cuda_id", type=int, default=0, help="CUDA device ID to use") parser.add_argument('--save_every', type=int, default=1, help='How often to save a snapshot') return parser.parse_args()
if __name__ == "__main__":
args = arg_parser() print(f"Training arguments: {args}") EPOCHS = args.epochs BATCH_SIZE = args.batch_size LR = args.lr LR_DECAY_STEP_NUM = args.lr_decay_step_num LR_DECAY_FACTOR = args.lr_decay_factor CUDA_ID = args.cuda_id DEVICE = torch.device(f"cuda:{CUDA_ID}") SAVE_EVERY = args.save_every
wandb_run = wandb.init( project="mnist", config={ "epochs": EPOCHS, "batch_size": BATCH_SIZE, "lr": LR, "lr_decay_step_num": LR_DECAY_STEP_NUM, "lr_decay_factor": LR_DECAY_FACTOR, } ) train_set, test_set = prepare_dataset() print(f"Train dataset size: {len(train_set)}") print(f"Test dataset size: {len(test_set)}") train_dataloader = prepare_dataloader(dataset=train_set, batch_size=BATCH_SIZE) test_dataloader = prepare_dataloader(dataset=test_set, batch_size=BATCH_SIZE) model = ConvNet() optimizer = optim.Adam(model.parameters(), lr=1e-3) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=LR_DECAY_STEP_NUM, gamma=LR_DECAY_FACTOR)
trainer = Trainer(model, optimizer, CUDA_ID)
for epoch in range(EPOCHS):
print(f"Epoch {epoch+1}/{EPOCHS}") print(f'Learning Rate: {scheduler.get_last_lr()[0]}')
start_time = time()
train_loss = trainer.train_epoch(train_dataloader) test_loss, test_accuracy = trainer.test_epoch(test_dataloader) print(f"Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}") epoch_time = time() - start_time current_lr = scheduler.get_last_lr()[0] wandb_run.log({ "epoch": epoch + 1, "train_loss": train_loss, "test_loss": test_loss, "test_acc": test_accuracy, "lr": current_lr, "epoch_time": epoch_time })
scheduler.step()
if (epoch + 1) % SAVE_EVERY == 0: trainer.save_checkpoint()
wandb_run.finish()
|