1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
| import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt import torch.nn.functional as F from torchvision import datasets, transforms from time import time import argparse
class ConvNet(nn.Module):
def __init__(self): super(ConvNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 32, 3, 1), nn.ReLU(), nn.Conv2d(32, 64, 3, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Dropout(0.25) ) self.classifier = nn.Sequential( nn.Linear(9216, 128), nn.ReLU(), nn.Dropout(0.5), nn.Linear(128, 10) )
def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) x = self.classifier(x) output = F.log_softmax(x, dim=1) return output
def arg_parser(): parser = argparse.ArgumentParser(description="MNIST Training Script") parser.add_argument("--epochs", type=int, default=5, help="Number of training epochs") parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training") parser.add_argument("--lr", type=float, default=0.0005, help="Learning rate") parser.add_argument("--lr_decay_step_num", type=int, default=1, help="Step size for learning rate decay") parser.add_argument("--lr_decay_factor", type=float, default=0.5, help="Factor by which learning rate is decayed") parser.add_argument("--cuda_id", type=int, default=0, help="CUDA device ID to use") return parser.parse_args()
def prepare_data(batch_size): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])
train_data = datasets.MNIST( root = './mnist', train=True, transform = transform, )
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
test_data = datasets.MNIST( root = './mnist', train=False, transform = transform, )
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=batch_size, shuffle=True)
return train_loader, test_loader
def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 30 == 0: print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
def train_mnist_classification(): args = arg_parser() print(args)
EPOCHS = args.epochs BATCH_SIZE = args.batch_size LR = args.lr LR_DECAY_STEP_NUM = args.lr_decay_step_num LR_DECAY_FACTOR = args.lr_decay_factor CUDA_ID = args.cuda_id DEVICE = torch.device(f"cuda:{CUDA_ID}")
train_loader, test_loader = prepare_data(BATCH_SIZE)
model = ConvNet().to(DEVICE) optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=LR_DECAY_STEP_NUM, gamma=LR_DECAY_FACTOR)
start_time = time() for epoch in range(EPOCHS):
epoch_start_time = time() print(f'Epoch {epoch}/{EPOCHS}') print(f'Learning Rate: {scheduler.get_last_lr()[0]}')
train(model, DEVICE, train_loader, optimizer) test(model, DEVICE, test_loader) scheduler.step()
epoch_end_time = time() print(f"Time for epoch {epoch}: {epoch_end_time - epoch_start_time:.2f} seconds")
end_time = time() print(f"Total training time: {end_time - start_time:.2f} seconds")
if __name__ == "__main__": train_mnist_classification()
|